berdasarkan gambar dibawah segitiga abc dan segitiga pqr

Syаratsegitiga аbc kongruen dengan segitiga pqr adаlаh. syarаt segitiga kongruen dengan segitigа pqr adalah. 1. Letаk sudut dаn besarnyа sudut abc = letak sudut dаn besarnya sudut pqr. 2. Panjаng sisi-sisi аbc = panjаng sisi-sisi pqr ContohSoal 1. Berdasarkan panjang sisi-sisi berikut ini yang dapat digambar menjadi sebuah segitiga adalah. A. 10 cm, 4 cm dan 5 cm. B. 12 cm, 6 cm dan 8 cm. C. 25 cm, 12 cm dan 9 cm. D. 30 cm, 18 cm dan 10 cm. SoalUlangan Harian Bab Kesebangunan dan Kongruensi Kelas 9 SMP. Andrian Vernandes August 17, 2016. Soal 1. Pernyataan berikut yang benar adalah. A. dua buah segitiga dikatakan kongruen jika sisi - sisi yang bersesuaian mempunyai perbandingan yang sama. B. Dua buah segitiga dikatakan kongruen jika sudut sudut yang bersesuaian sama besar. 30seconds. Q. Diketahui segitiga ABC siku-siku di A, Segitiga PQR siku-siku di Q. Jika segitiga ABC dan segitiga PQR kongruen, pernyataan di bawah ini benar, kecuali. answer choices. ∠ B = ∠ Q. \angle B\ =\ \angle Q ∠B = ∠Q. AB = PQ. Top1: pada segitiga PQR siku-siku di Q dan sudut P=45 jika panjang PR=10 cm Pengarang: Peringkat 108 Ringkasan: . tolong bantu kak ,jangan ngasal .Seorang penjual mie ayam mengeluarkan modal sebesar Rp. 1.500.000,00 untuk menjalankan usahanya Dia mematok harga mie ayamnyanya adalah Rp.9.000,00 pe. rporsi. Quand Harry Rencontre Sally Bande Annonce. PertanyaanDua segitiga ABCdan segitiga PQRkongruen. Diketahui ∠A=∠Q,∠B=∠R , maka pernyataan berikut yang benar ialah ....Dua segitiga ABC dan segitiga PQR kongruen. Diketahui , maka pernyataan berikut yang benar ialah ....AB = PQ BC = RQ AC = PQ AB = PR SDS. DifhayantiMaster TeacherMahasiswa/Alumni Universitas Muhammadiyah Prof. Dr. HamkaJawabanjawaban yang benar adalah yang benar adalah satu syarat dari dua buah segitiga dikatakan kongruenyaitu apabila dua sudut yang bersesuaian sama besar dan satu sisi yang bersesuaian sama panjang sudut-sisi-sudut. Diketahui segitiga dan segitiga kongruen dengan , dengan demikian sisi-sisi yang bersesuaian dan sama panjang, yaitu Dari keempat pilihan jawaban di atas, pernyataan yangbenar adalah . Oleh karena itu, jawaban yang benar adalah satu syarat dari dua buah segitiga dikatakan kongruen yaitu apabila dua sudut yang bersesuaian sama besar dan satu sisi yang bersesuaian sama panjang sudut-sisi-sudut. Diketahui segitiga dan segitiga kongruen dengan , dengan demikian sisi-sisi yang bersesuaian dan sama panjang, yaitu Dari keempat pilihan jawaban di atas, pernyataan yang benar adalah . Oleh karena itu, jawaban yang benar adalah C. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!1rb+Yuk, beri rating untuk berterima kasih pada penjawab soal! PembahasanDiketahui segitiga ABC dan segitiga PQR kongruen. Ingat bahwa pada dua segitiga yang kongruen, sisi yang bersesuaian panjangnya sama dan sudut-sudut yang bersesuaian besarnya sama. Pada kedua segitiga tersebut, sisi-sisi yang bersesuaian sebagai berikut. AC = QR = 4 , 2 cm BC = PQ = 6 cm Lalu, diperoleh jumlah panjang sisi PQ dan PR sebagai berikut. PQ + PR ​ = = ​ 6 + 7 13 cm ​ Oleh karena itu, jawaban yang benar adalah segitiga dan segitiga kongruen. Ingat bahwa pada dua segitiga yang kongruen, sisi yang bersesuaian panjangnya sama dan sudut-sudut yang bersesuaian besarnya sama. Pada kedua segitiga tersebut, sisi-sisi yang bersesuaian sebagai berikut. Lalu, diperoleh jumlah panjang sisi dan sebagai berikut. Oleh karena itu, jawaban yang benar adalah C. Sifat resan segitiga istimewa. Salam teman bagaimanakah kabar kalian agar kita selalu dibawah lindungan allah swt. sreg sesi ini kita akan membahas ihwal adat sifat segitiga unik. Segitiga distingtif atau khusus adalah segitiga yang mempunyai sifat-adat spesial idiosinkratis. Internal segitiga sama kaki istimewa ada tiga variasi merupakan segitiga segitiga seimbang tungkai, pengkolan-tikungan, dan sejajar sisi. berikut ini akan kita bahas akan halnya sifat kebiasaan segitiga istimewa tersebut. Resan Resan Segitiga spesial Atau Spesial A. Segitiga sama kaki kelokan-pengkolan Sekarang coba perhatikan gambar di atas. Bangun persegi abcd merupakan persegi panjang dengan semua kacamata A, B, C dan D ialah 90°. kalau persegi tangga ABCD tersebut diberikan garis diagonal di titik A ke C akan terbentuk dua buah bangkit segitiga siku-siku, ialah segitiga sama Fonem dan segitiga sama kaki ADC menyerupai gambar di sumber akar ini. Karena segitiga sama kaki belengkokan-siku sehingga kacamata B derajatnya 90°, maka segitiga ABC siku-siku di B, demikian pun dengan segitiga adc. segitiga ADC kelukan-siku di d alasannya sudut d = 90°. makara, segitiga Aksara dan segitiga ADC masing-masing yaitu segitiga kelukan-kelukan yang dibuat dari persegi pangkat abcd yang dipotong berdasarkan diagonal dari noktah A ke C atau panjang AC. berpangkal jabaran di atas, sehingga sanggup disimpulkan bahwa samudra riuk suatu sudut pada segitiga siku-siku ialah 90°. B. Segitiga Perhatikan gambar segitiga sama kaki Huruf dan segitiga ADC di radiks berikut ini menyerupai tulang beragangan sebelumnya. Impitkan kedua segitiga tersebut yang sisinya sekufu panjang menyerupai tulang beragangan di bawah ini. Bahwa akan terbantah terbentuk segitiga sama setara suku menyerupai gambar di atas. dengan demikian, sanggup dikatakan bagaikan berikut. segitiga sanggup dibuat berpangkal dua buah segitiga sama kaki kelokan-siku yang sama lautan dan sebangun. Masa ini, perhatikan rajah di atas. seandainya segitiga sama ekuivalen kaki PQR dilipat berdasarkan garis RS maka tutul P akan berhimpit dengan noktah Q dan noktah R akan berhimpit dengan bintik R. dengan demikian, janjang PR berapit dengan panjang QR. sehingga, ki perspektif PQR sebabat dengan sudut QPR. jadi, sanggup disimpulkan bahwa segitiga sama kaki memiliki dua biji kemaluan sisi nan panjangnya sekufu dan dua biji pelir sudut yang besarnya sebanding. Perhatikan juga rangka di atas. lipatlah segitiga PQR beralaskan kaliber yaitu RS. segitiga sama kaki PRS dan segitiga sama QRS akan tukar berimpit, sehingga panjang PR akan perhimpit dengan tinggi QR dan tahapan PS akan rapat dengan panjang SQ. dalam hal ini sanggup dikatakan bahwa janjang RS merupakan sumbu simetri semenjak segitiga PQR. mulai sejak uraian di atas, sanggup disimpulkan bahwa segitiga memiliki sebuah sumbu simetri. Contoh Soal Pada gambar di bawah ini. Diketahui segitiga klm sama kaki dengan tinggi lm = 13 cm dan panjang mn = 5 cm. kalau tesmak kln = 20°, tentukan a osean sudut MLN; b panjang KL dan MK. penyelesaian a dari gambar sanggup diketahui bahwa pada aturan segitiga sama istimewa salahsatunya segitiga sama siku – siku maka tesmak MLN = sudut KLN = 20°. jadi, besar sudut MLN = 20°. b alasannya segitiga KLM sama kaki, maka KL = LM = 13 cm. pada segitiga KLM, LN ialah sumbu simetri, sehingga MK = 2 x MN MN = NK = 2 x 5 cm = 10 cm. jadi, panjang KL = 13 cm dan tataran MK = 10 cm. C. Segitiga Sama Sisi Segitiga sama sama sisi ialah segitiga yang ketiga sisinya proporsional tangga. Waktu ini coba perhatikan gambar di bawah. Rencana di atas merupakan segitiga sama arah ABC dengan AB = BC = AC. Jika dia melipat segitiga Abc bersendikan garis AE, maka segitiga sama ABE dan segitiga ACE akan saling berimpit, sehingga B akan menempati C dengan bintik A tetap. dengan demikian, AB = AC yang mengakibatkan ki perspektif Huruf = sudut ACB. Jika anda melipat segitiga Aksara beralaskan garis CD, maka segitiga ACD dan segitiga BCD akan saling berimpit, sehingga A akan menempati B dengan C tegar. oleh alasannya itu, AC = BC yang mengakibatkan, sudut Huruf = kacamata BAC. Selanjutnya, takdirnya anda melipat segitiga sama kaki ABC berlandaskan garis BF, maka segitiga ABF dan segitiga CBF akan silih berimpit, sehingga A akan menempati C, dengan titik B tetap. makanya alasannya itu, AB = BC nan mengakibatkan ki perspektif BAC = sudut BCA. Mulai sejak rincian diatas diperoleh bahwa AC = BC = AB dan sudut ABC = sudut BAC = sudut BCA. berdasarkan uraian di atas sanggup disimpulkan bahwa segitiga sama kaki sisi memiliki tiga biji kemaluan sisi nan sama panjang dan tiga buah sudut yang selevel segara. Kini, perhatikan kembali gambar di bawah ini. Jika segitiga ABC dilipat berdasarkan garis AE, maka segitiga ABE dan segitiga ACE akan saling berimpit, sehingga AB akan menempati AC dan BE akan menempati CE. dalam situasi ini sanggup dikatakan bahwa AE merupakan sumbu simetri berbunga segitiga ABC. jika segitiga Abjad dilipat berdasarkan garis CD, maka segitiga ACD dan segitiga BCD akan saling berimpit, sehingga AC akan menempati BC dan AD akan menempati BD. penting, CD yaitu tunam simetri segitiga Lambang bunyi. Demikianlah pembahasan kali ini mudahmudahan berguna bakal pasangan ihwal sifat aturan segitiga khusus. Minta amnesti sebesar-besarnya jika cak semau prolog-prolog atau perkiraan yang keliru kerumahtanggaan postingan ini. Sendang Terdapat 48 buah contoh soal matematika SMP untuk BAB segitiga dan segi empat dalam artikel ini. Setiap kelompok soal sudah dibuat pembahasan dan kunci jawabannya dan dapat dikunjungi melalui yang terdapat di bawah Soal 1Segi empat berikut yang memiliki dua pasang sisi sejajar saling berhadapan kecuali………A. Persegi panjang B. Jajargenjang C. Trapesium sama sisi D Belah ketupatContoh Soal 2Perhatikan pernyataan yang berhadapan sama panjang Sudut yang berhadapan sama besarKedua diagonal memiliki panjang yang samaMemiliki dua pasang sisi sejajarSifat bangun belah ketupat ditunjukkan oleh nomor…….A. 1, 2 dan 3B. 1, 2 dan 4C. 1, 3 dan 4D. 2, 3 dan 4Contoh Soal 3Diketahui persegi seperti gambar dibawah panjang KL adalah 8 cm maka panjang KO adalah……..A. 8√2B. 6√2C. 4√2D. 2√2Contoh Soal 4Berdasarkan gambar di atas maka pernyataan berikut yang tidak benar adalah……..A. Panjang PT = QT = RT = STB. T adalah titik tengah perpotongan kedua diagonalC. Luas segitiga PTQ = luas segitiga QRTD. Luas segitiga PQR = luas segitiga PRSContoh Soal 5Diketahui gambar persegi panjang sebagai panjang AB dan BC berturut-turut adalah 8 cm dan 6 cm maka panjang AO adalah…….A. 5 cmB. 6 cmC. 10 cmD. 12 cmContoh Soal 6Berdasarkan gambar diatas, jika besar sudut KNM adalah 120⁰ maka besar sudut KLM dan sudut LMN berturut-turut adalah……..A. 60⁰ dan 120⁰B. 60⁰ dan 80⁰C. 60⁰ dan 100⁰D. 120⁰ dan 60⁰Jawaban DContoh Soal 7Perhatikan gambar trapesium sama kaki panjang AB = 7 cm dan DE = 3 cm maka panjang DC adalah……..A. 10 cmB. 13 cmC. 15 cmD. 17 cmContoh Soal 8Jika pada trapesium di bawah ini panjang PQ RS = 4 5, maka panjang RS itu sebenarnya adalah……..A. 14 cmB. 16 cmC. 20 cmD. 24 cmContoh Soal 9Di bawah ini terdapat gambar besar sudut P adalah x⁰ derajat dan sudut R adalah x + 20⁰, maka nilai x adalah……..A. 20⁰B. 40⁰C. 60⁰D. 80⁰Contoh Soal 10Belah ketupat ABCD memiliki 2 buah diagonal yang berpotongan di titik C. Jika diketahui panjang AB adalah 13 cm dan AE adalah 5 cm serta besar sudut C adalah 100⁰, maka panjang BD dan besar sudut B berturut-turut adalah……….A. 12 cm dan 45⁰B. 24 cm dan 80⁰C. 12 cm dan 40⁰D. 24 cm dan 100⁰Contoh Soal 11Diketahui besar sudut pada sebuah layang-layang adalah sebagai RPS dan sudut PQS berturut-turut adalah……..A. 30⁰ dan 35⁰B. 40⁰ dan 35⁰C. 45⁰ dan 40⁰D. 56⁰ dan 35⁰Contoh Soal 12Pada layang-layang EFGH berikut ini, besar sudut E = x⁰, sudut F = 60⁰ dan sudut H = 110⁰, maka besar sudut G adalah…….A. 45⁰B. 60⁰C. 95⁰D. 100⁰Contoh Soal 13Berdasarkan gambar dibawah ini, maka pernyataan berikut yang tidak benar adalah……..A. Besar sudut I + sudut J = 180⁰B. Panjang HI = 12 cmC. Panjang IL = 6 cmD. Besar sudut H + sudut I + sudut J + sudut K = 360⁰Gambar dibawah ini digunakan untuk menjawab soal nomor 14 - 15Diketahui panjang AB = 30 cm, AD = 20 cm dan BE = 12 Soal 14Berdasarkan gambar tersebut, maka nilai x dan panjang CE berturut-turut adalah……A. 4 cm dan 10 cmB. 4 cm dan 16 cmC. 5 cm dan 10 cmD. 5 cm dan 16 cmContoh Soal 15Keliling dan luas jajargenjang ABCD tersebut adalah……..A. 100 cm dan 240 cm²B. 100 cm dan 250 cm²C. 80 cm dan 240 cm²D. 80 cm dan 250 cm²Contoh Soal 16Luas Jajargenjang PQRS berikut ini adalah = 120 cm². Jika tinggi jajargenjang tersebut adalah 8 cm, panjang PQ = 10 cm dan perbandingan panjang QT dan RT = 1 4, maka keliling jajargenjang tersebut adalah……..A. 80 cmB. 90 cmC. 100 cmD. 110 cmContoh Soal 17Sebuah jajargenjang KLMN memiliki keliling sebesar 96 cm. Jika panjang sisi LM = 20 cm dan KO = 12 cm seperti yang ditunjukkan oleh gambar berikut, maka tinggi dan luas jajargenjang tersebut adalah……….A. 14 cm dan 225 cm²B. 15 cm dan 224 cm²C. 14 cm dan 224 cm²D. 16 cm dan 230 cm²Contoh Soal 18Perhatikan gambar luas jajargenjang EFGH adalah 144 cm², maka dan panjang EG = 18 cm, maka panjang HX adalah……..A. 7 cmB. 8 cmC. 9 cmD. 10 cmContoh Soal 19Trapesium ABCD adalah trapesium sama kaki dengan panjang sisi AB = 24 cm, CD = 12 cm dan BC = 10 cm. Keliling dan luas trapesium tersebut adalah………A. 56 cm dan 124 cm²B. 56 cm dan 156 cm²C. 60 cm dan 124 cm²D. 60 cm dan 156 cm²Contoh Soal 20Perhatikan gambar dibawah luas trapesium PQRS adalah 132 cm², maka kelilingnya adalah……..A. 85 cmB. 63 cmC. 52 cmD. 46 cmContoh Soal 21Sebuah trapesium memiliki luas 112 cm². Jika perbandingan sisi-sisi sejajarnya adalah 1 3 dan tingginya 7 cm, maka panjang masing-masing sisi sejajarnya adalah…….A. 12 cm dan 36 cmB. 10 cm dan 30 cmC. 9 cm dan 28 cmD. 8 cm dan 24 cmContoh Soal 22Diketahui trapesium KLMN dan NOPQ di bawah ini adalah sebangun. Keliling dan luas trapesium KLMN adalah…….A. 84 cm dan 250 cm²D. 84 cm dan 500 cm²C. 32 cm dan 250 cm²E. 32 cm dan 500 cm²Contoh Soal 23Luas belah ketupat ABCD yang memiliki panjang diagonal 12 cm dan 20 cm adalah…….A. 240 cm²B. 120 cm²C. 60 cm²D. 30 cm²Contoh Soal 24Diketahui panjang masing-masing diagonal belah ketupat PQRS adalah 16 cm dan 12 cm. Keliling dari belah ketupat tersebut adalah…….A. 70 cmB. 60 cmC. 50 cmD. 40 cmContoh Soal 25Perhatikan gambar berikutJika luas belah ketupat KLMN adalah 216 cm² dan x + y = 21, panjang Kl dan MN berturut-turut adalah…….A. 18 cm dan 24 cmB. 16 cm dan 26 cmC. 14 cm dan 30 cmD. 12 cm dan 34 cmContoh Soal 26Panjang salah satu diagonal ketupat EFGH adalah 32 cm dan luasnya = 380 cm². Keliling belah ketupat tersebut adalah…….A. 100 cmB. 80 cmC. 60 cmD. 40 cmContoh Soal 27Jika panjang AE = 6 cm, EG = ⅓ AE dan BD = 12 cm, maka luas daerah yang diarsir adalah…….A. 96 cm²B. 84 cm²C. 72 cm²D. 24 cm²Contoh Soal 28Luas dan keliling layang-layang yang panjang diagonalnya adalah 16 dan 12 cm adalah ……..A. 64 cm²B. 86 cm²C. 112 cm²D. 128 cm²Contoh Soal 29Perhatikan gambar dibawah ini. Jika panjang AC = 16 cm, DE = 6 cm dan AB = 15 cm, maka keliling layang-layang ABCD tersebut adalah……A. 50 cmB. 60 cmC. 70 cmD. 80 cmContoh Soal 30Luas layang-layang EFGH adalah 700 cm². Jika panjang EI = 20 cm dan panjang HI = ¼ HF, maka panjang IF adalah…..A. 27,75 cmB. 26,25 cmC. 25,50 cmD. 24,25 cmContoh Soal 31Layang-layang A memiliki luas 280 cm² dan panjang salah satu diagonalnya adalah 14 cm. Jika layang-layang B memiliki panjang diagonal setengah dari panjang diagonal layang-layang A, maka luas layang-layang B adalah…….A. 280 cm²B. 140 cm²C. 70 cm²D. 35 cm²Contoh Soal 32Andi ingin memasang kertas pada layang-layang yang telah dibuatnya. Ia mempunyai kertas berbentuk persegi dengan panjang sisi 1 m. Jika layang-layang yang dibuat Andi memiliki panjang diagonal 40 cm dan 90 cm, maka luas kertas yang tidak terpakai adalah……..mA. 0,92 B. 0,82C. 0,72D. 0,62Contoh Soal 33Berdasarkan panjang sisi-sisi berikut ini yang dapat digambar menjadi sebuah segitiga adalah………A. 10 cm, 4 cm dan 5 cmB. 12 cm, 6 cm dan 8 cmC. 25 cm, 12 cm dan 9 cmD. 30 cm, 18 cm dan 10 cmContoh Soal 34Panjang PR dan QR pada segitiga PQR adalah sama. Jika besar sudut P = 50⁰, maka besar dan jenis sudut R adalah…….A. Siku-siku 90⁰B. Tumpul dan 260⁰C. Lancip dan 50⁰D. Lancip dan 80⁰Contoh Soal 35Diketahui sebuah segitiga memiliki panjang sisi 22 cm, 10 cm dan 8 cm. Jenis dari segitiga tersebut adalah segitiga…...A. LancipB. Siku-siku C. TumpulD. Sama sisiContoh Soal 36Segitiga KLM memiliki panjang sisi KL = 13 cm, LM = 20 cm dan MK = 8 cm. Urutan sudut dalam segitiga tersebut dimulai dari yang terkecil adalah…….A. L, M, KB. K, L, MC. M, L, KD. L, K, MContoh Soal 37Urutan panjang sisi-sisi segitiga EFG dari yang terpanjang ke yang terpendek jika diketahui besar sudut E = 70⁰, F = 90⁰ dan G = 20⁰ adalah……..A. EF, FG, EGB. FG, EF, EGC. EF, EG, FGD. EG, FG, EFContoh Soal 38Jik diketahui besar sudut ACD adalah 118⁰, maka besar sudut A pada gambar dibawah ini adalah……A. 28⁰B. 59⁰C. 62⁰D. 118⁰Contoh Soal 39Perhatikan gambar dibawah iniNilai a dan besar sudut POQ berturut-turut adalah…….A. 60⁰B. 70⁰C. 80⁰D. 90⁰Contoh Soal 40Besar sudut A pada segitiga ABC adalah 90⁰. Jika panjang BC = 17 cm dan AB = 8 cm, maka luas dan keliling segitiga tersebut adalah…….A. 30 cm dan 70 cm²B. 30 cm dan 60 cm²C. 40 cm dan 70 cm²D. 40 cm dan 60 cm²Contoh Soal 41Panjang sisi sebuah segitiga sama sisi adalah 12 cm. Luas segitiga tersebut adalah……A. 9√3 cm²B. 18√3 cm²C. 36√3 cm²D. 72√3 cm²Contoh Soal 42Segitiga sama kaki PQR dengan PR = QR memiliki luas sebesar 48 cm². Jika panjang PQ = 12 cm, maka keliling segitiga tersebut adalah……A. 96 cmB. 64 cmC. 42 cmD. 32 cmContoh Soal 43Perbandingan alas dan tinggi segitiga adalah 4 5. Jika luas segitiga adalah 200 cm², maka panjang alas dan tinggi segitiga berturut-turut adalah……..A. 80 cm dan 100 cmB. 80 cm dan 50 cmC. 40 cm dan 100 cmD 10 cm dan 50 cmContoh Soal 44Perhatikan gambar dibawah ini Segitiga ABC kongruen dengan segitiga CDE. Jika luas persegi ABDF adalah = 256 cm², maka luas segitiga ABC + CDE = ……..A. 64 cm²B. 128 cm²C. 192 cm²D. 256 cm²Contoh Soal 45Luas segitiga yang panjang sisinya 7 cm, 15 cm, 19 cm adalah…….A. 42 cm²B. 47 cm²C. 53 cm²D. 59 cm²Contoh Soal 46Sebuah lahan kosong berbentuk persegi panjang rencananya akan dijadikan taman. Taman di desain seperti gambar dibawah sudut taman akan ditanami berbagai macam bunga dalam daerah berbentuk segitiga siku-siku dan bagian lain akan ditanami rumput. Luas daerah yang ditanami rumput adalah………A. 105 m²B. 118 m²C. 127 m²D. 135 m²Contoh Soal 47Ani ingin membuat bingkai foto berbentuk segitiga dengan desain seperti yang ditunjukkan oleh gambar dibawah belakang bingkai foto tersebut akan ditempel penahan yang terbuat dari kardus bekas dengan bentuk yang sama dengan bingkai. Jika Ani memiliki kardus berbentuk persegi panjang sisi 50 cm, maka sisa kardus yang tidak terpakai adalah……A. cm²B. cm²C cm²D. cm²Contoh Soal 48Perhatikan gambar dibawah panjang IJ adalah 28 cm, maka L 1 + L 2 + L 3 = ……..A. 259 cm²B. 299 cm²C. 329 cm²D 369 cm²Contoh Soal 49Perhatikan gambar berikut Jika luas persegi panjang 3 = ½ persegi panjang 2, maka luas segitiga OPQ adalah…….A. 60 cm²B. 80 cm²C. 90 cm²D. 120 cm² Kelas 9 SMPKESEBANGUNAN DAN KONGRUENSISegitiga-segitiga kongruenPada gambar di bawah ini QR=QS, PQ=QT. Buktikan bahwaa. segitiga PQR dan segitiga TQS kongruenb. segitiga PSU dan segitiga TRU kongruenSegitiga-segitiga kongruenKESEBANGUNAN DAN KONGRUENSIGEOMETRIMatematikaRekomendasi video solusi lainnya0029Dua buah segitiga disebut kongruen apabilaa. sisi-sisi ya...Teks videoPada gambar dibawah ini QR = QR PQ = qt. Buktikan bahwa segitiga PQR dan segitiga pqs kongruen jika soal seperti ini kita harus mengetahui konsep kongruen yaitu suatu bidang datar dapat dikatakan kongruen jika sisi-sisi yang bersesuaian sama panjang dan sudut yang bersesuaian sama besar kita pertama akan memisahkan segitiga PQR dengan segitiga pqs terlebih dahulu setelah kita memisahkan kedua segitiga kita akan melihat pada soalnya kembali yaitu QR = QS sudah saya tandai dengan strip merah kemudian PQ = qt saya tandai dengan strip biru q r dengan QS itu merupakan Sisi yang sama dan Sisi yang bersesuaian itu udah satu bukti bahwa segitiga kongruen kemudian bukti kedua adalah Thank you dengan PQ itu Sisinya bersesuaian dan panjangnya sama karena dia sama-sama dan juga ya kita bisa lihat pada sudut t dan sudut p. sama-sama 90 derajat dan mereka sudutnya bersesuaian Kemudian untuk panjang ST dengan panjang PR kita dapat cari dengan rumus Phytagoras kita misalkan aja kalau misalnya garis miringnya kan C terus yang alasnya itu a ininya B kita coba ya cari yang di PR sini bisa juga kita tulis B itu = C kuadrat min a kuadrat terus kita akan Nah karena s q = r Q maka kita juga bisa ditulis disini C terus t q = PQ Kita juga bisa tulis ini a nah karena hasilnya PR itu = B dan panjangnya ini sama jadi SD juga b maka SD dengan Rp itu juga sama Sisi yang bersesuaian dan panjangnya sama Baby ini udah cukup bukti bahwa kedua segitiga ini kongruen karena kita sudah berhasil membuktikan bahwa ada Ketiga Sisinya yang bersesuaian itu sama panjang dan kita juga tahu bahwa ada 1 sudut yang bersesuaian sama besar yaitu t dengan sudut P dia sama besarnya dan dia bersesuaian pada sudut Q besar sudut ini juga sama dan dia juga bersesuaian kenapa saya bisa bilang begitu bila kita lihat pada soal sudut jenis sudut PQR dengan sudut P Q R itu berhimpit sehingga mereka sudutnya sama sudutnya kemudian kita juga bisa membuktikan bahwa sudut s dengan sudut R ini sama Gimana caranya kita mengetahui bahwa kalau satu segitiga itu sudutnya 180 jadi saya ambil contoh segitiga yang estetik kita udah tahu nih sudutnya udah tahu sudut Q nya terus berarti sudut s nya itu = 180 dikurang sudut t sama dikurang sudut q. Ya kan tapi sudut p sama Teh kan sama jadi kalau kita cari sudut R caranya juga sama 180 dikurang sudut itu = sudut p kemudian Suci juga = Q kedua sudut ini itu kan sama udah dibuktikan bahwa mereka bersesuaian dan sama sehingga hasilnya sudut s dengan sudut R juga pasti = sudut R yang bersesuaian dan sama juga jadi udah bisa di buktikan bahwa kedua segitiga ini kongruen soal B segitiga pqs dan segitiga PQR kongruen kita akan pertama melihat sudut P kita diberitahu bahwa sudut P dari dia 90 derajat karena sudut rpq 90°, nah lalu sudut S 90°, maka sudut STR juga 90 derajat sudut R juga sama aja ya mau OTR atau STR kan sama-sama sudutnya di 90° abis itu kita bisa lihat juga pada sudut sudut S supp dengan sudut r u t Ini bertolak belakang karena mereka bertolak belakang maka mereka itu sama Nah kita Tandain di segitiga yang sudah kita pisah karena mereka bertolak belakang maka sudutnya sama ya dan kakaknya dua sudut ini bersesuaian jadi sudut p sama sudut yaitu bersesuaian dan sama besar sudut u&u itu dia bersesuaian dan sama besar kemudian sudut s dengan sudut R itu bisa kita tadi sudah kita buktikan ya pada yang percobaan yang A3 di sana deh sudut s sama sudut r nya kemudian Kita bisa lihat lagi. dengan persamaan ini nah QS = PQ + PS kalau kita lihat pada Gambarkan seperti itu ya terus QR juga q r itu = p q ditambah RT kita misalkan kalau kiasnya c. Jadi kita bisa tulis C = terus packing-nya a a terus ps-nya misalnya B ya + b ya ps-nya Misalnya lalu ini kan yang pertama nih Terus yang kedua terus dia juga yang pertama terus kita lihat nih dia bilang q r itu sama dengan QS jadi kita juga bisa tulis dong kalau misalnya qr-nya c Sama aja terus dia juga bilang kalau PQ = jadinya Ini kuotanya bisa kita tulis juga nah kan udah tahu kalau misalnya C Itu = a + b untuk persamaan yang pertama untuk jadi C berarti di sebelah sininya a ini juga harus ditambah B dong karena hasilnya harus sama C gitu Jadi otomatis RT itu juga B maka panjang PS dengan panjang RT tuh sama dan mereka adalah Sisi yang bersesuaian kemudian untuk mempercepat kita mengetahui bahwa kedua segitiga ini kongruen ada tiga ketentuan yang pertama itu Sisi sudut Sisi C maksudnya apabila dua segitiga ini misalnya Sisinya 12 segitiga nih terus Sisi sisi ini dengan Sisi ini lalu sudut ini dengan sudut yang ini Sisi ini dengan surat ini itu sama berarti hanya mengetahui ketentuan ini sudah pasti kongruen terus kalau misalnya sudut Sisi sudut berarti kau sudut Sisi sudut sudut misalnya sudut yang lebih atas sudut yang dibawa dengan sini jenis sudut Sisi sudut sudut Sisi sudut jika sudut ini sama dengan ini sudut bawahnya sama Sisi yang diapit diantara sudut juga sama berarti segitiga kongruen maka sisi-sisi berarti ketiga Sisi yang bersesuaian dari kedua segitiga ini misalnya sama itu juga dipastikan kongruen Nah kalau misalnya dari segitiga stu dan RT kita bisa menggunakan yang sudut Sisi sudut karena lihatnya sudut s dengan sudut R itu sama kemudian Sisinya itu yang SP dengan RT itu sama dan sudut P dengan sudut t jadi dengan menggunakan konsep sudut Sisi sudut kedua segitiga ini kongruen maka ini sudah dibuktikan yang a itu betul kongruen dan yang B juga Betul kongruen sampai jumpa di pembahasan soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

berdasarkan gambar dibawah segitiga abc dan segitiga pqr